Solar Photovoltaic Development –
Glint and Glare Guidance

Prepared for:
Developers, planners and stakeholders.

Aim:
To provide guidance for assessing the impact of glint and glare from solar photovoltaic (PV) panels upon surrounding receptors.

Receptors:
Dwellings (residential amenity), Roads (safety), Rail (safety) and Aviation (safety).

January, 2017

www.pagerpower.com
EXECUTIVE SUMMARY

Overview and Purpose

The purpose of this guidance is to provide solar photovoltaic (PV) developers, planners and stakeholders with an assessment process for determining the effect of glint and glare (solar reflections) upon receptors surrounding a proposed solar PV development.

Glint and glare is a relatively new planning consideration thus there is little formal guidance regarding the issue. This guidance document has therefore been produced to bridge this knowledge gap pertaining to the assessment of glint and glare. The aim is to produce a standardised assessment process for developers, planners or stakeholders to follow to reduce the element of risk associated with glint and glare.

The guidance presented is based on the following:

- Reviews of existing guidance in a variety of areas;
- Glint and glare assessment experience and industry knowledge;
- An overview of available solar reflection studies.

This guidance document specifically focuses on the UK and Irish markets however the methodologies are deemed applicable for worldwide solar PV development.

Key Receptors

Glint and glare can significantly affect nearby receptors under particular conditions. The key receptors with respect to glint and glare are residents in surrounding dwellings, road users, train infrastructure (including train drivers), and aviation infrastructure (including pilots and air traffic controllers).

Modelling Requirements

A geometric glint and glare assessment model must include the following:

- The Earth’s orbit around the Sun;
- The Earth’s rotation;
- The Earth’s orientation;
- The location of the solar PV development including the reflector (solar panel) area;
- The reflector’s 3D orientation including azimuth angle of the solar panel (the orientation of the solar panels relative to north and the solar panel elevation angle);
- Local topography including receptor and panel heights above mean sea level.

For increased accuracy, the model should account for the following:

- Terrain at the visible horizon;
- Local time zone and daylight savings times;
- Determine which solar panels create the solar reflection within the solar PV development;
- Azimuth range of the Sun\(^1\) when a solar reflection is geometrically possible;
- Vertical elevation range of the Sun when a solar reflection is geometrically possible;
- High-resolution analysis i.e. undertaking multiple geometric calculations within the given solar PV development area. For example, at intervals of between 1 and 20 metres;
- The intensity of the solar reflection produced.

\(^1\) The azimuth range is the angle between the Sun and North, measured clockwise around the receptor’s horizon. The Sun azimuth range shows the location of the Sun when a geometric solar reflection is possible. Therefore it is possible to determine whether the Sun and the solar reflection are both likely to be visible to a receptor.
Assessment Inputs – Receptors

The following paragraphs set out the key distances for identifying receptors and the height data which should be included.

Dwellings within approximately 1km of a proposed solar PV development that may have a view of the solar panels. Include an additional height to account for eye level within the relevant floor of the dwelling.

Roads within approximately 1km of a proposed solar PV development that may have a view of the solar panels. Include an additional height to account for eye level of a road user.

Railway infrastructure within approximately 100m of a proposed solar PV development. Include an additional height to account for eye level of a train driver or the height of a railway signal. Include an assessment of railway signals that utilise incandescent bulb technology and/or where no hood is attached.

Consider aviation receptors out to 30km to determine the requirement for assessment, if any. Standard assessment includes the Air Traffic Control (ATC) tower and the approach paths. Additional receptors may be included where a solar reflection may be deemed a hazard to safety.

Assessment Significance

Determining the significance of a solar reflection varies for each receptor type. In general, the significance criteria for glint and glare effects are as follows:

- No Impact – A solar reflection is not geometrically possible or will not be visible from the assessed receptor. No mitigation required.
- Low – A solar reflection is geometrically possible however any impact is considered to be small such that mitigation is not required e.g. intervening screening will limit the view of the reflecting solar panels significantly. No mitigation required.
- Moderate – A solar reflection is geometrically possible and visible however it occurs under conditions that do not represent a worst-case scenario. Mitigation may be required.
- Major – A solar reflection is geometrically possible and visible under conditions that will produce a significant impact. Mitigation will be required if the proposed solar PV development is to proceed. Mitigation and consultation is recommended.

See the following sections where the process for determining the significance of a solar reflection is described for each receptor type:

- Section 6 – Dwellings;
- Section 7 – Road infrastructure;
- Section 8 – Railway infrastructure;
- Section 9 – Aviation infrastructure.

In each section, the process for determining the significance of a solar reflection is described comprehensively.

Guidance Conclusions

This guidance should be followed to ensure comprehensive assessment of solar PV developments with respect to glint and glare. This guidance is applicable for solar PV development anywhere in the world.

Non-LED.

Solar Photovoltaic Glint and Glare Guidance
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Administration Page</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>3</td>
</tr>
<tr>
<td>List of Contents</td>
<td>5</td>
</tr>
<tr>
<td>List of Figures</td>
<td>6</td>
</tr>
<tr>
<td>List of Tables</td>
<td>6</td>
</tr>
<tr>
<td>Glossary</td>
<td>7</td>
</tr>
<tr>
<td>Pager Power Company Profile</td>
<td>9</td>
</tr>
<tr>
<td>1 Overview</td>
<td>10</td>
</tr>
<tr>
<td>2 Consultation</td>
<td>12</td>
</tr>
<tr>
<td>3 Literature Review</td>
<td>13</td>
</tr>
<tr>
<td>4 Modelling Parameter Requirements</td>
<td>25</td>
</tr>
<tr>
<td>5 Glint and Glare Impact Significance</td>
<td>28</td>
</tr>
<tr>
<td>6 Assessing the Impact upon Surrounding Dwellings</td>
<td>31</td>
</tr>
<tr>
<td>7 Assessing the Impact upon Road Users</td>
<td>38</td>
</tr>
<tr>
<td>8 Assessing the Impact upon Railway Operations</td>
<td>42</td>
</tr>
<tr>
<td>9 Assessing the Impact upon Aviation Operations</td>
<td>47</td>
</tr>
<tr>
<td>10 Overall Conclusions</td>
<td>53</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1 Field of view .. 16
Figure 2 Signal positioning.. 16
Figure 3 Illustration showing normal and solar reflection from a solar panel (side on)....................... 26
Figure 4 Illustration showing solar reflection from a solar panel (top down).. 26
Figure 5 Illustration showing panel elevation angle (side-on) and panel azimuth angle (top down) 26
Figure 6 Conditions for determining significant glint and glare.. 29
Figure 7 General process for determining the significance of glint and glare....................................... 30
Figure 8 Illustration showing receptor identification process – dwellings ... 32
Figure 9 Dwelling impact significance flow chart .. 36
Figure 10 Illustration of ‘significant screening’ ... 37
Figure 11 Illustration showing receptor identification process – roads ... 39
Figure 12 Road user impact significance flow chart .. 41
Figure 13 Illustration showing receptor identification process – train drivers and signals................... 43
Figure 14 Train driver impact significance flow chart.. 45
Figure 15 Illustration showing receptor identification process – aviation... 48
Figure 16 ATC tower impact significance flow chart.. 50
Figure 17 Pilots (approaching aircraft) impact significance flow chart.. 51

LIST OF TABLES

Table 1 Stakeholder consultation... 12
Table 2 Impact significance definition... 28
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodrome</td>
<td>A defined area on land or water (including any buildings, installations, and equipment) intended to be used either wholly or in part for the arrival, departure, and surface movement of aircraft³.</td>
</tr>
<tr>
<td>Approach Path</td>
<td>The descent path of an aircraft as it comes in for landing.</td>
</tr>
<tr>
<td>ATC Tower</td>
<td>Air Traffic Control tower – used by air traffic controllers to observe and direct aviation activity at or near to an aerodrome.</td>
</tr>
<tr>
<td>Azimuth Angle</td>
<td>The angle the solar panel faces relative to north (0/360 degrees).</td>
</tr>
<tr>
<td>CAA</td>
<td>Civil Aviation Authority.</td>
</tr>
<tr>
<td>Diffuse Reflection</td>
<td>The reflection of light from a surface such that the incident light is reflected at many angles rather than at just one angle.</td>
</tr>
<tr>
<td>Elevation Angle</td>
<td>The angle of the solar panel relative to 0 degrees (the horizontal or flat).</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration.</td>
</tr>
<tr>
<td>Glare</td>
<td>A continuous source of bright light.</td>
</tr>
<tr>
<td>Glint</td>
<td>A momentary flash of bright light.</td>
</tr>
<tr>
<td>IAA</td>
<td>Irish Aviation Authority.</td>
</tr>
<tr>
<td>Incandescent Light Bulb</td>
<td>An incandescent light bulb is an electric light with a wire filament heated to a high temperature. An electric current is passed through it until it glows with visible light.</td>
</tr>
<tr>
<td>Incident Solar Reflection</td>
<td>The solar reflection from the solar panel appears visible and close to the location of the Sun, such that both the solar reflection and the Sun originate and are visible from a receptor’s viewpoint simultaneously.</td>
</tr>
<tr>
<td></td>
<td>The angle between the reflected light and the perpendicular (or normal) to the surface (solar panel) is the angle of incidence.</td>
</tr>
<tr>
<td>LED</td>
<td>A light-emitting diode (LED). It is a semiconductor diode, which glows when a voltage is applied. LED signals are brighter and more efficient than incandescent bulbs and normally do not have a reflective mirror.</td>
</tr>
<tr>
<td>Level Crossing</td>
<td>A crossing where (typically) a road passes over a railway line.</td>
</tr>
<tr>
<td>Level Crossing Warning Lights (LCWL)</td>
<td>The system of lights located next to a level crossing on a railway line, used to warn road users from crossing.</td>
</tr>
</tbody>
</table>

Solar Photovoltaic Glint and Glare Guidance
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Roads</td>
<td>Typically a road with a one or more carriageways with a maximum speed limit of up to 60mph or 70mph (UK A Road) or 100kph (Ireland N Road). These roads typically have fast moving vehicles with moderate to busy traffic density. Other road designations or maximum speed limits may apply internationally.</td>
</tr>
<tr>
<td>Major National Roads</td>
<td>Typically a road with a minimum of two carriageways with a maximum speed limit of up to 70mph (UK) or 120kph (Ireland). These roads typically have fast moving vehicles with busy traffic. Other road designation or maximum speed limits may apply internationally.</td>
</tr>
<tr>
<td>Local Roads</td>
<td>Typically roads and lanes with the lowest traffic densities. Speed limits vary.</td>
</tr>
<tr>
<td>Normal</td>
<td>The mathematical term used to define the line at right angles to a reflector i.e. a solar panel.</td>
</tr>
<tr>
<td>Potential for temporary after-image</td>
<td>The likelihood of a solar reflection continuing to appear in one’s vision after the exposure to the original image has ceased.</td>
</tr>
<tr>
<td>Railway Signal</td>
<td>A light or physical signalling system located beside a railway line. Used to indicate to a train driver a particular order.</td>
</tr>
<tr>
<td>Receptor</td>
<td>A potential viewer of glint and glare effects.</td>
</tr>
<tr>
<td>Regional Roads</td>
<td>Typically a single carriageway with a maximum speed limit of up to 60mph (UK B Road) or 80kph (Ireland R Road). The speed of vehicles will vary with a typical traffic density of low to moderate. Other road designations or maximum speed limits may apply internationally.</td>
</tr>
<tr>
<td>Runway Threshold</td>
<td>The beginning of the physical runway surface.</td>
</tr>
<tr>
<td>SGHAT</td>
<td>Solar Glare Hazard Analysis Tool - solar glint and glare model designed by Sandia National Laboratory, specifically for aviation and recommended by the FAA.</td>
</tr>
<tr>
<td>Signal Hood</td>
<td>A signal hood is located on a lit railway signal to screen the light from direct sunlight.</td>
</tr>
<tr>
<td>Shadow Flicker</td>
<td>Refers to the sunlight flickering effect caused when rotating wind turbine blades periodically cast shadows over neighbouring properties through small openings such as windows.</td>
</tr>
<tr>
<td>Solar Reflection</td>
<td>Also referred to as glint or glare. Used interchangeably to describe glint or glare.</td>
</tr>
<tr>
<td>Specular Reflection</td>
<td>The mirror-like reflection of light from a surface, in which light from a single incoming direction is reflected into a single outgoing direction.</td>
</tr>
</tbody>
</table>
PAGER POWER COMPANY PROFILE

Company Background
Pager Power is a dedicated consultancy company based in Suffolk, UK. The company has undertaken projects in 43 countries within Europe, Africa, America, Asia and Australia.

The company comprises a team of experts to provide technical expertise and guidance on a range of planning issues for large and small developments.

Pager Power was established in 1997. Initially the company focus was on modelling the impact of wind turbines on radar systems.

Over the years, the company has expanded into numerous fields including:
- Renewable energy projects.
- Building developments.
- Aviation and telecommunication systems.

Pager Power prides itself on providing comprehensive, understandable and accurate assessments of complex issues in line with national and international standards. This is underpinned by its custom software, longstanding relationships with stakeholders and active role in conferences and research efforts around the world.

Pager Power’s assessments withstand legal scrutiny and the company can provide support for a project at any stage.

Pager Power's Experience
Pager Power has undertaken over 250 Glint and Glare Assessments in the United Kingdom and internationally.

The studies have included assessment of UK civil and military aerodromes, railway infrastructure, radar installations and other ground based receptors including roads and dwellings.

Pager Power was involved in the first consented solar farm in Ireland at Coolroe, which included a public hearing.
1 OVERVIEW

Introduction

1.1 Solar photovoltaic (PV) developments are becoming increasingly common within the UK and Ireland. Deployment has been rapid from 2010-2015 in the UK, with deployment set to pick up over the coming years in Ireland. Glint and glare is a relatively new planning consideration brought about through the rise and rapid deployment of solar PV. This, in turn, has led to a gap in the knowledge base in this area and thus there is little formal guidance regarding glint and glare for developers, planners or stakeholders to follow.

1.2 Whilst general planning guidance for solar PV development has been established, there is no specific planning guidance, in the UK and Ireland, for assessing the effects of glint and glare on surrounding receptors.

1.3 This guidance document has specific focus on the UK and Irish markets however the methodologies are deemed applicable for worldwide solar PV development.

Purpose

1.4 This guidance has been produced for developers, planners and stakeholders.

1.5 The aims of this guidance are as follows:
 - To bridge the knowledge gap for all stakeholders regarding glint and glare (solar reflections) from solar PV developments.
 - To produce a standardised and universally agreed methodology for assessing the impact of glint and glare upon receptors surrounding a proposed solar PV development.
 - To ensure the proper and safe development of renewable energy schemes in the UK, Ireland and internationally.

1.6 A standardised process will reduce risk for all stakeholders of a proposed solar PV development.

1.7 The guidance is based on industry knowledge, consultation and experience.

Scope

1.8 Glint and glare is referenced within guidance documents throughout the UK and Ireland, however a specific methodology for assessing, contextualising and determining the impact of solar glint and glare are not provided for many receptor types. Aviation is covered within FAA guidance from the USA, however this is not strictly applicable within the UK and Ireland, nor is it currently endorsed by the CAA or IAA in the UK or Republic of Ireland respectively.

1.9 This guidance document aims to present a standardised methodology for assessing glint and glare for surrounding receptors, this includes:
 - Residents in surrounding dwellings;
 - Road users on surrounding roads;
 - Railway infrastructure (including train drivers);
 - Aviation infrastructure (including pilots and air traffic controllers).

4 Overview of the associated guidance is presented in Section 3.
Glint and Glare Definition

1.10 The reflective properties of solar PV panels vary from different manufacturers. Whilst solar panels vary in their reflectivity with some claiming ‘anti-glare’ properties, no solar panel absorbs 100% of the incoming light. Therefore, any solar PV panel has the potential to produce a solar reflection. The relative absorptive properties of a solar panel should be considered on a case-by-case basis.

1.11 The definition of glint and glare can vary, however, the definition used for the purpose of this guidance is as follows:

- **Glint** – a momentary flash of bright light;
- **Glare** – a continuous source of bright light.

1.12 In context, glint will be witnessed by moderate to fast moving receptors whilst glare would be encountered by static or slow moving receptors with respect to a solar farm. The term ‘solar reflection’ is used to refer to both reflection types i.e. glint and glare.
2 CONSULTATION

2.1 Consultation with key stakeholders is essential to ensure any concerns are suitably addressed. A list of some of the key stakeholders pertaining to safety related glint and glare issues is presented in Table 1 below.

<table>
<thead>
<tr>
<th>Party</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK Civil Aviation Authority (CAA)</td>
<td></td>
</tr>
<tr>
<td>UK Ministry of Defence (MOD)</td>
<td></td>
</tr>
<tr>
<td>Irish Department of Defence (DOD)</td>
<td></td>
</tr>
<tr>
<td>Irish Aviation Authority (IAA)</td>
<td>Key stakeholders pertaining to safety.</td>
</tr>
<tr>
<td>Network Rail</td>
<td></td>
</tr>
<tr>
<td>Irish Rail</td>
<td></td>
</tr>
<tr>
<td>Relevant Highways Agencies</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Stakeholder consultation
3 LITERATURE REVIEW

3.1 A review of the available guidance and studies pertaining to solar PV developments and glint and glare is presented in this section.

Planning Guidance

UK Planning Practice Guidance

3.2 UK Planning Practice Guidance dictates that a glint and glare assessment is required in some instances. The guidance for ‘Renewable and low carbon energy’5 dictates the following with respect to glint and glare. Note only the relevant information is presented.

‘The deployment of large-scale solar farms can have a negative impact on the rural environment, particularly in undulating landscapes. However, the visual impact of a well-planned and well-screened solar farm can be properly addressed within the landscape if planned sensitively.

Particular factors a local planning authority will need to consider include:

- the proposal’s visual impact, the effect on landscape of glint and glare (see guidance on landscape assessment) and on neighbouring uses and aircraft safety;
- the extent to which there may be additional impacts if solar arrays follow the daily movement of the sun;
- great care should be taken to ensure heritage assets are conserved in a manner appropriate to their significance, including the impact of proposals on views important to their setting. As the significance of a heritage asset derives not only from its physical presence, but also from its setting, careful consideration should be given to the impact of large scale solar farms on such assets. Depending on their scale, design and prominence, a large scale solar farm within the setting of a heritage asset may cause substantial harm to the significance of the asset;
- the potential to mitigate landscape and visual impacts through, for example, screening with native hedges.

The approach to assessing cumulative landscape and visual impact of large scale solar farms is likely to be the same as assessing the impact of wind turbines. However, in the case of ground-mounted solar panels it should be noted that with effective screening and appropriate land topography the area of a zone of visual influence could be zero.’

3.3 The UK planning guidance does not provide a specific methodology for assessing the impact of glint and glare.

3.4 Information relating to solar glare and general guidelines for safer driving is presented in the UK’s Highway Code. Each country will have their own guidance with respect to road safety. The relevant information is presented below for reference. Note only the relevant information is presented.

‘93 Slow down, and if necessary stop, if you are dazzled by bright sunlight.

125 The speed limit is the absolute maximum and does not mean it is safe to drive at that speed irrespective of conditions. Driving at speeds too fast for the road and traffic conditions is dangerous. You should always reduce your speed when:

- the road layout or condition presents hazards, such as bends;
- sharing the road with pedestrians, cyclists and horse riders, particularly children, and motorcyclists;
- weather conditions make it safer to do so;
- driving at night as it is more difficult to see other road users.

146 Adapt your driving to the appropriate type and condition of road you are on. In particular:

- do not treat speed limits as a target. It is often not appropriate or safe to drive at the maximum speed limit;
- take the road and traffic conditions into account. Be prepared for unexpected or difficult situations, for example, the road being blocked beyond a blind bend. Be prepared to adjust your speed as a precaution;
- where there are junctions, be prepared for road users emerging;
- in side roads and country lanes look out for unmarked junctions where nobody has priority;
- be prepared to stop at traffic control systems, road works, pedestrian crossings or traffic lights as necessary;
- try to anticipate what pedestrians and cyclists might do. If pedestrians, particularly children, are looking the other way, they may step out into the road without seeing you.’

3.5 Different countries have various highway standards that must be followed. The UK Highway Code states that a driver should be aware of particular hazards such as glare from the Sun, and should adjust their driving style appropriately. Solar panels reflect sunlight producing solar glare under specific conditions, therefore it is advised that this guidance is considered.

Railway Guidance

UK Network Rail Guidance

3.6 This section provides an overview of the relevant railway guidance with respect to the siting of signals on railway lines. Network Rail is the stakeholder of the UK’s railway infrastructure. Generally, a railway operator’s concerns would likely relate to the following:

- The development producing a solar reflection that affects train drivers;
- The development producing a solar reflection towards level crossing warning lights (LCWL) or level crossings; and
- The development producing a solar reflection that affects railway signals.

3.7 The railway guidelines are presented below. The extract is taken from section 3.2 of the ‘Guidance on Signal Positioning and Visibility’ which details the visibility of signals, train drivers’ field of vision and the implications with regard to signal positioning. Note only the relevant information is presented.

‘3.2 The visibility of signals

3.2.1 Overview

The effectiveness of an observer’s visual system in detecting the existence of a target will depend upon the object’s position in the observer’s visual field, its contrast with its background, its luminance properties, and the observer’s adaptation to the illumination level of the environment. It is also influenced by the processes relating to colour vision, visual accommodation, and visual acuity. Each of these issues is described below.

3.2.2 Field of vision

The field of vision, or visual field, is the area of the visual environment that is registered by the eyes when both eyes and head are held still. The normal extent of the visual field is approximately 135 degrees in the vertical plane and 200 degrees in the horizontal plane.

The visual field is normally divided into central and peripheral regions: the central field being the area that provides detailed information. This extends from the central point (0 degrees) to approximately 30 degrees at each eye. The peripheral field extends from 30 degrees out to the edge of the visual field.

Objects are seen more quickly and identified more accurately if they are positioned towards the centre of the observer’s field of vision, as this is where our sensitivity to contrast is highest. Peripheral vision is particularly sensitive to movement and light.

In the diagram above, the two shaded regions represent the view from the left eye (L) and the right eye (R) respectively. The darker shaded region represents the region of binocular overlap. The oval in the centre represents the central field of vision.

Research has shown that vehicle drivers search for signs/signals towards the centre of the field of vision. As approach speed increases, drivers demonstrate a tunnel vision effect and focus only on objects in a field of +8° from the direction of travel.

3.2.2.1 Field of vision

Drivers become increasingly dependent on central vision for signal detection at increasing train speeds, and even minor distractions can reduce the visibility of the signal if it is viewed towards the peripheral field of vision. (D I)

Because of our sensitivity to movement in the peripheral field, the presence of clutter to the sides of the running line, for example, fence posts, lamp-posts, traffic, or non-signal lights, such as house, factory or security lights, can be highly distracting. (D I)

3.2.2.2 Implications

Signals should be at a height and distance from the running line that permits them to be viewed towards the centre of the field of vision. (D)
'Car stop' signs should be positioned such that, if practicable, platform starting signals and 'OFF' indicators can be seen in the driver’s central field of vision. (D)

If possible, clutter and non-signal lights in a driver’s field of view should be screened off or removed so that they do not cause distraction. (D I)

The distance at which the 8° cone along the track is initiated is dependent on the minimum reading time and distance which is associated to the speed of trains along the track. The extract below is taken from section B5 (pages 8-9) of the guidance which details the required minimum reading time for a train driver when approaching a signal. Note only the relevant information is presented.

‘B5.2.2 Determining the assessed minimum reading time

GE/RT8037

The assessed minimum reading time shall be no less than eight seconds travelling time before the signal.

The assessed minimum reading time shall be greater than eight seconds where there is an increased likelihood of misread or failure to observe. Circumstances where this applies include, but are not necessarily limited to, the following:

a) the time taken to identify the signal is longer (for example, because the signal being viewed is one of a number of signals on a gantry, or because the signal is viewed against a complex background)

b) the time taken to interpret the information presented by the signal is longer (for example, because the signal is capable of presenting route information for a complex layout ahead)

c) there is a risk that the need to perform other duties could cause distraction from viewing the signal correctly (for example, the observance of lineside signs, a station stop between the caution and stop signals, or DOO (P) duties)

d) the control of the train speed is influenced by other factors (for example, anticipation of the signal aspect changing).

The assessed minimum reading time shall be determined using a structured format approved by the infrastructure controller.’

3.8 Network Rail guidance does not specifically reference the effect of glint and glare from solar PV developments on railway infrastructure. Nonetheless, the guidance references the importance of signal visibility and driver awareness, hence the guidance has merit when determining whether glint and glare will have a significant impact on railway safety.
Aviation Guidance

UK CAA Guidance

3.9 The UK Civil Aviation Authority (CAA) issued interim guidance relating to Solar Photovoltaic Systems (SPV) on 17 December 2010 and was subject to a CAA information alert 2010/53. The formal policy was cancelled on September 7th, 2012, however it remains the most recent and comprehensive CAA guidance produced to date. The CAA guidance is presented in the section below. Note only the relevant information is presented.

Interim CAA Guidance - Solar Photovoltaic Systems

‘BACKGROUND

1 Airport interest in solar energy is growing rapidly as a way to reduce operating costs and to demonstrate a commitment to renewable energy and sustainable development. In response, the CAA is seeking to develop its policy on the installation of Solar Photovoltaic (SPV) Systems and their impact on aviation. In doing so, it is reviewing the results of research having been carried out in the United States by the Federal Aviation Administration (FAA) culminating in the publication of Technical Guidance for Evaluating Solar Technologies on Airports and also reviewing guidance issued by other National Aviation Safety Administrations and Authorities on this subject.

2 On completion of the review, the CAA, together with the assistance of other aviation stakeholders, will develop a policy and provide formal guidance material on the installation of SPV, principally on or in the vicinity of licensed aerodromes but will also include guidance on installations away from aerodromes (or ‘en-route’). This document therefore constitutes interim CAA guidance until a formal policy has been developed.

DISCUSSION

3 At present the key safety issue is perceived to be the potential for reflection from SPV to cause glare, dazzling pilots or leading them to confuse reflections with aeronautical lights. Whilst permission is not required from the CAA for any individual or group to shine or reflect a light or lights into the sky, SPV developers should be aware of the requirements to comply with the Air Navigation Order (ANO) 2009. In particular, developers and Local Planning Authorities (LPA) should be cognisant of the following articles of the ANO with respect to any SPV development regardless of location:

- Article 137 – Endangering safety of an aircraft.
- Article 221 – Lights liable to endanger.
- Article 222 – Lights which dazzle or distract.

4 The potential for SPV installations to cause electromagnetic or other interference with aeronautical Communications Navigational and Surveillance equipment (CNS) must be considered by the SPV developer, in coordination with the CAA, the aerodrome Air Traffic Service provider (ATS), the Air Navigation Service Provider (ANSP) and/or NATS and the MoD, as required.

5 Where SPV systems are installed on structures that, for example, extend above the roofline of tall buildings (either on, or ‘off-aerodrome’), or where they are installed in the vertical plane (on plinths or towers), then there may be the potential for creating an obstacle hazard to aircraft and - in addition to the potential for creating turbulence hazard to aircraft - any infringement of the aerodrome Obstacle Limitation Surfaces (OLS) shall also need to be considered by the Aerodrome Licence Holder (ALH).

In this context, the term “in the vicinity” refers to officially safeguarded aerodromes noted in the Planning Circulars (see Paragraph 10) and a distance of up to 15km from the ‘Aerodrome Reference Point’ or the centre of the longest runway.

SPV installations proposed further than 15km from an aerodrome are considered “en-route” developments, and may still require consultation with the CAA for an assessment on the impact, if any, to CNS equipment.
6 For all planned SPV installations it is best practice for the developer to consult with the operators of nearby aerodromes before any construction is initiated.

7 An ALH, in agreement with their LPA, may wish to initiate procedures so that it is only consulted on SPV planning applications at shorter distances from the aerodrome (for example within a 5 km radius), or at distances that would limit SPV development from within the aircraft operating visual circuit; however, this is at the discretion of the ALH and no CAA approval or endorsement of this decision is necessary.

RECOMMENDATIONS

8. It is recommended that, as part of a planning application, the SPV developer provide safety assurance documentation (including risk assessment) regarding the full potential impact of the SPV installation on aviation interests.

9. Guidance on safeguarding procedures at CAA licensed aerodromes is published within CAP 738 Safeguarding of Aerodromes and advice for unlicensed aerodromes is contained within CAP 793 Safe Operating Practices at Unlicensed Aerodromes.

10. Where proposed developments in the vicinity of aerodromes require an application for planning permission the relevant LPA normally consults aerodrome operators or NATS when aeronautical interests might be affected. This consultation procedure is a statutory obligation in the case of certain major airports, and may include military establishments and certain air traffic surveillance technical sites. These arrangements are explained in Department for Transport Circular 1/2003 and for Scotland, Scottish Government Circular 2/2003.

11. In the event of SPV developments proposed under the Electricity Act, the relevant government department should routinely consult with the CAA. There is therefore no requirement for the CAA to be separately consulted for such proposed SPV installations or developments.

12. If an installation of SPV systems is planned on-aerodrome (i.e. within its licensed boundary) then it is recommended that data on the reflectivity of the solar panel material should be included in any assessment before installation approval can be granted. Although approval for installation is the responsibility of the ALH, as part of a condition of a CAA Aerodrome Licence, the ALH is required to obtain prior consent from CAA Aerodrome Standards Department before any work is begun or approval to the developer or LPA is granted, in accordance with the procedures set out in CAP 791 Procedures for Changes to Aerodrome Infrastructure.

13. During the installation and associated construction of SPV systems there may also be a need to liaise with nearby aerodromes if cranes are to be used; CAA notification and permission is not required.

14. The CAA aims to replace this informal guidance with formal policy in due course and reserves the right to cancel, amend or alter the guidance provided in this document at its discretion upon receipt of new information.

15. Further guidance may be obtained from CAA’s Aerodrome Standards Department via aerodromes@caa.co.uk.

3.10 The CAA Guidance does not provide a methodology for assessing the effects of glint and glare on aviation infrastructure. Many aviation stakeholders under the umbrella of the CAA in the UK utilise the US FAA guidance presented on the following page. It is known that other countries internationally recommend the FAA guidance and it remains the most detailed methodology for assessing glint and glare internationally. The FAA guidance is presented in the following subsection.
US FAA Guidance

3.11 The most comprehensive guidelines available for the assessment of solar PV developments near aerodromes were produced initially in November 2010 by the United States Federal Aviation Administration (FAA) and updated in 2013.

3.13 Key points14 from the latest FAA guidance produced in 2013 are presented in the following section.

Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated Airports

‘SUMMARY: This notice establishes interim FAA policy for proposals by sponsors of federally obligated airports to construct solar energy systems on airport property. FAA is adopting an interim policy because it is in the public interest to enhance safety by clarifying and adding standards for measuring ocular impact of proposed solar energy systems which are effective upon publication. FAA will consider comments and make appropriate modifications before issuing a final policy. The policy applies to any proposed on-airport solar energy system that has not received from the FAA either an unconditional airport layout plan approval or a “no objection” finding on a Notice of Proposed Construction or Alteration Form 7460–1.

DATES: The effective date of this interim policy is October 23, 2013.

Background

There is growing interest in installing solar photovoltaic (PV) and solar hot water (SHW) systems on airports. While solar PV or SHW systems (henceforth referred to as solar energy systems) are designed to absorb solar energy to maximize electrical energy production or the heating of water, in certain situations the glass surfaces of the solar energy systems can reflect sunlight and produce glint (a momentary flash of bright light) and glare (a continuous source of bright light). In conjunction with the United States Department of Energy (DOE), the FAA has determined that glint and glare from solar energy systems could result in an ocular impact to pilots and/or air traffic control (ATC) facilities and compromise the safety of the air transportation system. While the FAA supports solar energy systems on airports, the FAA seeks to ensure safety by eliminating the potential for ocular impact to pilots and/or air traffic control facilities due to glare from such projects.

The FAA established a cross-organizational working group in 2012, to establish a standard for measuring glint and glare, and clear thresholds for when glint and glare would impact aviation safety. The standards that this working group developed are set forth in this notice.

A sponsor of a federally-obligated airport must request FAA review and approval to depict certain proposed solar installations (e.g., ground-based installations and collocated installations that increase the footprint of the collocated building or structure) on its airport layout plan (ALP), before construction begins15.

14 Edited to include only key information with respect to assessing glint and glare from solar PV developments.

15 FAA Technical Guidance for Evaluating Selected Solar Technologies on Airports, Section 2.3.5, states that “solar installations of any size, located on an airport, that are not collocated on an existing structure (i.e., roof of an existing building) and require a new footprint, need to be shown on the Airport Layout Plan (ALP). Collocated solar installations need to be shown on the ALP only if these installations substantially change the footprint of the collocated building or structure. Available at: http://www.faa.gov/airports/environmental/policy_guidance/media/airport_solar_guide_print.pdf. Title 49 of the United States Code (USC), sec. 47107(a), requires, in part, a current ALP approved by the FAA prior to the approval of an airport development project. See Grant Assurance No. 29, AC No. 150/5070–6B, and FAA Order No. 5100.38.
A sponsor of a federally-obligated airport must notify the FAA of its intent to construct any solar installation16 by filing FAA Form 7460–1, “Notice of Proposed Construction or Alteration” under 14 CFR Part 77 for a Non-Rulemaking case (NRA)17,18. This includes the intent to permit airport tenants, including Federal agencies, to build such installations. The sponsor’s obligation to obtain FAA review and approval to depict certain proposed solar energy installation projects at an airport is found in 49 U.S.C. 47107(a)(16) and Sponsor Grant Assurance 29, “Airport Layout Plan.” Under these latter provisions, the sponsor may not make or permit any changes or alterations in the airport or any of its facilities which are not in conformity with the ALP as approved by the FAA and which might, in the opinion of the FAA, adversely affect the safety, utility or efficiency of the airport.

Airport sponsors and project proponents must comply with the policies and procedures in this notice to demonstrate to the FAA that a proposed solar energy system will not result in an ocular impact that compromises the safety of the air transportation system. This process enables the FAA to approve amendment of the ALP to depict certain solar energy projects or issue a “no objection” finding to a filed 7460–1 form. The FAA expects to continue to update these policies and procedures as part of an iterative process as new information and technologies become available.

Solar energy systems located on an airport that is not federally-obligated or located outside the property of a federally-obligated airport are not subject to this policy. Proponents of solar energy systems located off-airport property or on non-federally-obligated airports are strongly encouraged to consider the requirements of this policy when siting such systems.

This interim policy clarifies and adds standards for measurement of glint or glare presented in the 2010 Technical Guidance document. Later this year the FAA plans to publish an update to the “Technical Guidance for Evaluating Selected Solar Technologies on Airports,” (hereinafter referred to as “Technical Guidance”) dated November 2010. This update to the technical guidance will include the standards for measuring glint and glare outlined in this notice. It will also provide enhanced criteria to ensure the proper siting of a solar energy installation to eliminate the potential for harmful glare to pilots or air traffic control facilities.

In advance of the planned update, as part of this Notice, we are clarifying one aspect of the Technical Guidance relating to airport sponsor and FAA responsibilities for evaluating the potential for solar energy systems installed on airports to either block, reflect, or disrupt radar signals, NAVAIDS, and other equipment required for safe aviation operations. Section 3.1 of the Technical Guidance, entitled “Airspace Review,” correctly states that this role is exclusively the responsibility of FAA Technical Operations (Tech Ops). However subsection 3.1.3, “System Interference,” states: “[s]tudies conducted during project siting should identify the location of radar transmission and receiving facilities and other NAVAIDS, and determine locations that would not be suitable for structures based on their potential to either block, reflect, or disrupt radar signals.”

16 Any solar installation means any ground-based solar energy installation and those solar energy installations collocated with a building or structure (i.e., rooftop installations).
17 FAA Technical Guidance for Evaluating Selected Solar Technologies on Airports Section 3.1 reads in part “All solar projects at airports must submit to FAA a Notice of Proposed Construction Form 7460 . . . ”. This section further states “Even if the project will be roof mounted . . . the sponsor must still submit a case” (i.e., file a Form 7460–1).
18 The requirements of this policy are not mandatory for a proposed solar installation that is not on an airport and for which a form 7460–1 is filed under part 77 and is studied under the Obstruction Evaluation Program. However, the FAA urges proponents of off-airport solar-installations to voluntarily implement the provisions in this policy.

Solar Photovoltaic Glint and Glare Guidance
Reading the two sections together, what is meant is that the airport sponsor, in siting a proposed solar energy system, is responsible for limiting the potential for inference with communication, navigation, and surveillance (CNS) facilities. The sponsor should do so by ensuring that solar energy systems remain clear of the critical areas surrounding CNS facilities. FAA Advisory Circular (AC) 5300–13, “Airport Design,” Chapter 6, defines the critical areas for common CNS facilities located on an airport. Sponsors may need to coordinate with FAA Technical Operations concerning CNS facilities not in AC 5300–13. As stated in Section 3.1, the FAA is responsible for evaluating if there are any impacts to CNS facilities. The FAA will conduct this review after the Form 7460–1 is filed for the construction of a new solar energy system installation on an airport. In summary, airport sponsors do not need to conduct studies on their own to determine impacts to CNS facilities when siting a solar energy system on airport. Section 3.1.3 will be revised accordingly in the next version of the Technical Guidance.

Interim Policy Statement
The following sets forth the standards for measuring ocular impact, the required analysis tool, and the obligations of the Airport Sponsor when a solar energy system is proposed for development on a federally-obligated airport.

The FAA is adopting an interim policy because it is in the public interest to enhance safety by clarifying and adding standards for measuring ocular impact of proposed solar energy systems. FAA will consider comments and make appropriate modifications before issuing a final policy in a future Federal Register Notice. The policy applies to any proposed solar energy system that has not received unconditional airport layout plan approval (ALP) or a “no objection” from the FAA on a filed 7460–1, Notice of Proposed Construction or Alteration.

Standard for Measuring Ocular Impact
FAA adopts the Solar Glare Hazard Analysis Plot shown in Figure 1 below as the standard for measuring the ocular impact of any proposed solar energy system on a federally-obligated airport. To obtain FAA approval to revise an airport layout plan to depict a solar installation and/or a “no objection” to a Notice of Proposed Construction Form 7460–1, the airport sponsor will be required to demonstrate that the proposed solar energy system meets the following standards:

1. No potential for glint or glare in the existing or planned Airport Traffic Control Tower (ATCT) cab, and

2. No potential for glare or “low potential for after-image” (shown in green in Figure 1) along the final approach path for any existing landing threshold or future landing thresholds (including any planned interim phases of the landing thresholds) as shown on the current FAA-approved Airport Layout Plan (ALP). The final approach path is defined as two (2) miles from fifty (50) feet above the landing threshold using a standard three (3) degree glidepath.

Ocular impact must be analyzed over the entire calendar year in one (1) minute intervals from when the sun rises above the horizon until the sun sets below the horizon.

Tool To Assess Ocular Impact
In cooperation with the DOE, the FAA is making available free-of-charge the Solar Glare Hazard Analysis Tool (SGHAT). The SGHAT was designed to determine whether a proposed solar energy project would result in the potential for ocular impact as depicted on the Solar Glare Hazard Analysis Plot shown above.

The SGHAT employs an interactive Google map where the user can quickly locate a site, draw an outline of the proposed solar energy system, and specify observer locations (Airport Traffic Control Tower cab) and final approach paths. Latitude, longitude, and elevation are automatically recorded through the Google interface, providing necessary information for sun position and vector calculations. Additional information regarding the orientation and tilt of the solar energy panels, reflectance, environment, and ocular factors are entered by the user.
If glare is found, the tool calculates the retinal irradiance and subtended source angle (size/distance) of the glare source to predict potential ocular hazards ranging from temporary afterimage to retinal burn. The results are presented in a simple, easy-to-interpret plot that specifies when glare will occur throughout the year, with color codes indicating the potential ocular hazard. The tool can also predict relative energy production while evaluating alternative designs, layouts, and locations to identify configurations that maximize energy production while mitigating the impacts of glare.

Required Use of the SGHAT

As of the date of publication of this interim policy, the FAA requires the use of the SGHAT to demonstrate compliance with the standards for measuring ocular impact stated above for any proposed solar energy system located on a federally-obligated airport. The SGHAT is a validated tool specifically designed to measure glare according to the Solar Glare Hazard Analysis Plot. All sponsors of federally obligated airports who propose to install or to permit others to install solar energy systems on the airport must attach the SGHAT report, outlining solar panel glare and ocular impact, for each point of measurement to the Notice of Proposed Construction Form 7460–1.

The FAA will consider the use of alternative tools or methods on a case-by-case basis. However, the FAA must approve the use of an alternative tool or method prior to an airport sponsor seeking approval for any proposed on airport solar energy system. The alternative tool or method must evaluate ocular impact in accordance with the Solar Glare Hazard Analysis Plot.

Please contact the Office of Airport Planning and Programming, Airport Planning and Environmental Division, APP–400, for more information on the validation process for alternative tools or methods.

Airport sponsor obligations have been discussed above under Background. We caution airport sponsors that under pre-existing airport grant compliance policy, failure to seek FAA review of a solar installation prior to construction could trigger possible compliance action under 14 CFR Part 16, “Rules of Practice for Federally-Assisted Airport Enforcement Proceedings.” Moreover, if a solar installation creates glare that interferes with aviation safety, the FAA could require the airport to pay for the elimination of solar glare by removing or relocating the solar facility.

3.14 The guidance states that any proposed solar PV development should not produce glint and glare towards the ATC Tower (existing or proposed). ‘No glint and glare’ or glare with a ‘low potential for temporary after-image’ is acceptable towards any existing or proposed 2-mile runway approach path. Glare of greater intensity is not acceptable towards a 2-mile runway approach.
The Air Navigation Order

3.15 The Air Navigation Order (ANO) from 200919 contains general aviation legislation with respect to aviation safety. Key points relating to general safety and light as a hazard are presented below. Note only the relevant information is presented.

The Air Navigation Order 2009

Endangering safety of an aircraft

137. A person must not recklessly or negligently act in a manner likely to endanger an aircraft, or any person in an aircraft.

Lights liable to endanger

221.—(1) A person must not exhibit in the United Kingdom any light which—

(a) by reason of its glare is liable to endanger aircraft taking off from or landing at an aerodrome; or

(b) by reason of its liability to be mistaken for an aeronautical ground light is liable to endanger aircraft.

(2) If any light which appears to the CAA to be a light described in paragraph (1) is exhibited, the CAA may direct the person who is the occupier of the place where the light is exhibited or who has charge of the light, to take such steps within a reasonable time as are specified in the direction—

(a) to extinguish or screen the light; and

(b) to prevent in the future the exhibition of any other light which may similarly endanger aircraft.

(3) The direction may be served either personally or by post, or by affixing it in some conspicuous place near to the light to which it relates.

(4) In the case of a light which is or may be visible from any waters within the area of a general lighthouse authority, the power of the CAA under this article must not be exercised except with the consent of that authority.

Lights which dazzle or distract

222. A person must not in the United Kingdom direct or shine any light at any aircraft in flight so as to dazzle or distract the pilot of the aircraft.

3.16 The document states that no ‘light’, ‘dazzle’ or ‘glare’ should be produced which would produce a detrimental impact to aircraft safety. This guidance is referenced within the CAA guidance.

4 MODELLING PARAMETER REQUIREMENTS

4.1 A glint and glare assessment requires a geometric model to accurately predict whether a solar reflection is geometrically possible towards a particular receptor.

Geometric Modelling Requirements

4.2 The requirements for a geometric model are presented below. Failure to include the parameters below is likely to result in an over-simplified output that would not be considered reliable in the context of predicted impact. The calculations are three dimensional and complex, and must account for the following:

- The Earth’s orbit around the Sun;
- The Earth’s rotation;
- The Earth’s orientation;
- The location of the solar PV development including the reflector (solar panel) area;
- The reflector’s 3D orientation including azimuth angle of the solar panel (the orientation of the solar panels relative to north and the solar panel elevation angle);
- Local topography including receptor and panel heights above mean sea level.

4.3 For increased accuracy, the model should account for the following:

- Terrain at the visible horizon;
- Local time zone and daylight savings times;
- Determination of the solar panels that create the solar reflection within the solar PV development;
- Azimuth range of the Sun\(^{20}\) when a solar reflection is geometrically possible;
- Vertical elevation range of the Sun when a solar reflection is geometrically possible;
- High-resolution analysis i.e. undertaking multiple geometric calculations within the given solar PV development area. For example, at intervals of between 1 and 20 metres;
- The intensity of the solar reflection produced.

Geometric Modelling Overview

4.4 Solar reflections from a solar panel are specular meaning that a high percentage of incoming light is reflected in a particular direction. The direction of a specular solar reflection from a flat reflector is calculated by considering the normal. The normal is an imaginary line perpendicular to the reflective surface and originates from the point the incoming light intercepts the face of the solar panel. Figures 3 and 4 on the following page may be used to aid understanding of the reflection calculation process.

\(^{20}\) The azimuth range is the angle between the Sun and North, measured clockwise around the receptor's horizon. The Sun azimuth range shows the location of the Sun when a geometric solar reflection is possible. Therefore, it is easy to determine whether the Sun and the solar reflection are both likely to be visible to a receptor.
4.5 The direction of a solar reflection is also dependent on the elevation angle and the azimuth angle of a solar panel. The solar panel elevation angle and azimuth angle are illustrated in Figure 5 below.
4.6 The left image in Figure 5 shows the panel elevation angle. A typical panel elevation angle value for x in the UK and Ireland is 15°-35°. The right image shows the panel azimuth angle viewed from a top down perspective. A typical panel azimuth angle in the UK and Ireland is 180° (facing south towards the equator).

Geometric Modelling Methodology Overview

4.7 A geometric solar reflection model needs to consider a number of factors when determining whether a solar reflection is geometrically possible towards a surrounding receptors, and if so, the duration throughout the year. The following information is required for a complete geometric solar reflection model:

- A model of the Sun’s path throughout the sky for an entire selected year;
- For calculating a solar reflection:
 - The 3D angle between the source and the normal;
 - The azimuth and elevation of the solar reflection, by verifying the following:
 - That the angle between source (the Sun) and normal (relative to the solar panel, considering its elevation and azimuth angle) is equal to the angle between the normal and solar reflection;
 - That the source, normal and solar reflection are in the same plane;
- A model of the path of the Sun relative to the solar PV development area based on the solar PV development’s latitude and longitude;
- The assessed receptor location’s latitude and longitude relative to the above.

The model must then be run to determine whether the Sun is ever in a position within the sky to create a solar reflection from the solar panels within the solar PV development area towards the assessed receptor. This must consider the relative heights of the solar panels and receptors. Where a solar reflection is geometrically possible, a date time graph is a suitable representational format.

4.8 The process outlined above does not describe the full methodology for undertaking a detailed geometric glint and glare assessment however, it presents the key criteria that must be considered within a model.

Modelling Parameter Requirement Conclusions

4.9 Various modelling methodologies can be used to model solar reflections from the Sun. The process outlined provides general guidance for the parameters that should be built into a geometric solar reflection model.
5 GLINT AND GLARE IMPACT SIGNIFICANCE

Overview

5.1 The significance of glint and glare will vary for different receptors. This section presents a general overview of the significance criteria with respect to experiencing a solar reflection.

Impact significance definition

5.2 For each glint and glare assessment, an overall conclusion should be made with reference to the requirement for mitigation for each assessed receptor. Table 2 below presents the recommended definition of ‘impact significance’ in glint and glare terms and the requirement for mitigation under each.

<table>
<thead>
<tr>
<th>Impact Significance</th>
<th>Definition</th>
<th>Mitigation Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Impact</td>
<td>A solar reflection is not geometrically possible or will not be visible from the assessed receptor.</td>
<td>No mitigation required.</td>
</tr>
<tr>
<td>Low</td>
<td>A solar reflection is geometrically possible however any impact is considered to be small such that mitigation is not required e.g. intervening screening will limit the view of the reflecting solar panels significantly.</td>
<td>No mitigation required.</td>
</tr>
<tr>
<td>Moderate</td>
<td>A solar reflection is geometrically possible and visible however it occurs under conditions that do not represent a worst-case.</td>
<td>Whilst the impact may be acceptable, consultation and/or further analysis should be undertaken to determine the requirement for mitigation.</td>
</tr>
<tr>
<td>Major</td>
<td>A solar reflection is geometrically possible and visible under conditions that will produce a significant impact. Mitigation and consultation is recommended.</td>
<td>Mitigation will be required if the proposed solar PV development is to proceed.</td>
</tr>
</tbody>
</table>

Table 2 Impact significance definition

5.3 Figure 6 on the following page highlights the general conditions under which a solar reflection may be possible. These are key considerations when determining whether a solar reflection is to be considered significant and whether mitigation should be implemented.
General overview – determining significant glint and glare effects

5.4 The following six conditions should be considered when determining whether a predicted solar reflection will produce an impact (low to major) for the assessed receptors. These conditions are illustrated in Figure 6 to the right. Each one is explained further below.

1. The reflector can be seen by the receptor i.e. there is line of sight between the observer (receptor) and the reflecting solar panel;
2. The location of the receptor relative to the solar reflection. The significance of a solar reflection may be dependent on its location of origin relative to the location of the receptor;
3. The time of day when the Sun is in the position to produce a solar reflection from a solar panel towards an assessed receptor\(^{21}\). Some times of day may be more significant than others for some receptors;
4. The path between the Sun and reflector is clear of obstruction i.e. there is a line of sight between the Sun and the reflecting solar panel when the Sun is at a location in the sky where it can produce a solar reflection;
5. The solar reflection is not coming from the same direction as the Sun. A solar reflection is less significant when a receptor is already facing directly at the Sun;
6. A momentary exposure is less significant than a prolonged one. Therefore, the duration of the solar reflection should be considered for static receptors i.e. dwellings or ATC Towers.

5.5 Figure 7 on the following page shows the general process for determining the significance of glint and glare.

\(^{21}\) Not specifically referenced within the significance criteria for each assessed receptor (dwellings, road, rail and aviation) however in some instance the time of day may warrant consideration.

Solar Photovoltaic Glint and Glare Guidance
5.6 The specific methodologies for each receptor (dwellings, road, railway and aviation) are presented in Sections 6-9.
6 ASSESSING THE IMPACT UPON SURROUNDING DWELLINGS

Overview

6.1 Local residents are a key stakeholder within the local environment when proposing a solar PV development. This is because residents will be living in close proximity to the solar PV development whilst also potentially having views of the solar panels for its lifetime. Where a view of the solar panel exists, a solar reflection may be possible which may impact upon residential amenity. The following guidance has therefore been produced to determine in what instances, a solar reflection becomes significant and mitigation should be implemented.

Key considerations

6.2 A list of key considerations for assessing glint and glare with respect to surrounding dwellings and residential amenity is presented below:

- Surrounding dwellings may have views of a solar PV development. Where a view of the solar panel exists, a solar reflection may be possible;
- A view of a solar panel however does not guarantee that a solar reflection is possible;
- There is no technical limit (distance) within which a solar reflection is possible for a surrounding dwelling receptor however, the significance of a reflection decreases with distance. This is because the proportion of an observer’s field of vision that is taken up by the reflecting area diminishes as the separation distance increases;
- Seasonal variations or additional developments may change the view from a dwelling towards the solar panels over time;
- Terrain and shielding by vegetation are also more likely to obstruct an observer’s view at longer distances;
- In general, the geometry of the relationship between the solar panels and the movement of the Sun in the northern hemisphere means that dwellings due east and west of the panels are most likely to view a solar reflection for south facing arrays panels. Dwellings that are north or south of the panels are unlikely to experience a solar reflection in this instance;
- For solar PV developments that have solar panels orientated at an azimuth direction other than south, solar reflections may be directed in alternate directions.

6.3 The following subsections present the recommended methodology for assessing the impact upon residential amenity.

Identifying receptors

6.4 The following process should be used for identifying dwelling receptors:

1. Identify dwellings in the immediate surrounding area (out to approximately 1km from the solar PV development boundary) that may have visual line of sight to the solar panels. Figure 8 on the following page shows the receptor identification process;
2. If visual line of sight exists between the proposed solar PV development and a dwelling, then a solar reflection could be experienced if it is geometrically possible. If there is no line of sight, then a reflection cannot be experienced;
3. An additional height should be added to the ground level at a dwelling to represent a viewing height;
4. For dwellings, a recommended additional height of 1.8 metres above ground level should be added to account for eye level on the ground floor. A height of 3.8 metres is recommended for a first floor. Additional heights should be considered where a receptor is higher than a first floor. Modelling is recommended for ground floor receptors because it is typically occupied during daylight hours;
5. Use the height and location data within the geometric solar reflection model.
Figure 8 Illustration showing receptor identification process – dwellings

Assessment process

6.5 The following process should be used for modelling glint and glare for the identified dwelling receptors:

1. Define the solar PV development panel area;
2. Undertake geometric calculations, as outlined within Section 4 of this guidance;
3. Produce a solar reflection chart to determine whether a solar reflection is geometrically possible, and if so at what time/duration;
4. Assess the results of the geometric glint and glare assessment in the context of the following:
 a. Sun location relative to the solar panels;
 b. Location of the reflecting solar panels relative to the dwelling;
 c. Existing screening;
 d. Proposed screening;
5. Determine whether a solar reflection is significant;
6. Consider mitigation, if required.
Discussion of significant effects

6.6 There are many solar PV developments where solar reflections are geometrically possible and visible from surrounding dwellings. Experiencing a solar reflection does not, however, guarantee a significant effect requiring mitigation will occur. Assuming the solar PV development is visible from a window of a room occupied during daylight hours, the duration of time for which a solar reflection could last is considered to be the most significant characteristic.

6.7 Other factors that could be considered when determining whether a solar reflection is significant include:

- Whether the solar reflection is incident to direct sunlight and the location;
- Whether the dwelling has a window facing the solar PV development;
- The room within the dwellings from which a solar reflection may be visible i.e. is it occupied for a long period during daylight hours;
- The time of day when a solar reflection is geometrically possible.

6.8 The duration of time for which a solar reflection is possible is considered to be the overall defining characteristic when determining whether mitigation is required. Defining a minimum duration for effects to become significant is, however, subjective. For static receptors, the length of time for which a solar reflection is geometrically possible and visible will determine its significance upon residential amenity. Therefore, it is appropriate to choose a duration beyond which solar reflections become significant and where mitigation is required. Applying a strictly scientific approach is difficult however because:

- Most models generally show a worst case scenario of glint and glare, often predicting solar reflections for a much greater length of time than will be experienced in reality;
- The scenario in which glint and glare occurs will vary for each dwelling;
- The effects of glint and glare are subjective and the significance will vary from person to person.

6.9 In order to quantify and determine where a significant impact is expected, previous glint and glare assessment experience has been drawn upon as well as a review of existing guidance with respect to light based environmental impacts, these include:

- Previous glint and glare assessment experience;
- Shadow flicker guidance for wind turbines. Guidance has been produced which sets durations beyond which a significant impact on residential amenity is expected and mitigation is required.

22 Shadow flicker, like glint and glare, is considered a detrimental effect created through the manipulation of sunlight. Therefore the guidance has been used for comparative purposes.
Previous experience of glint and glare dwelling assessments

6.10 It is common for dwellings to be located within 1km of a proposed solar PV development. Assessment experience means that typical results for proposed ground mounted solar PV developments\(^{23}\) are known. It is common for solar reflections to be possible in the mid-morning (~06:00-08:00GMT) and again in the early evening (~17:00-19:00GMT). There are many examples of dwellings located where a solar reflection is geometrically possible however, a solar reflection could only ever be significant where the solar reflection is visible from the dwelling. Assuming a solar reflection is geometrically possible and the reflecting solar panels are visible, a solar reflection would be experienced when the following conditions are met:

1. An observer is located at a point within the dwelling where a solar reflection is possible e.g. located at a kitchen window at the time of the day when a solar reflection is geometrically possible;
2. The weather at the particular time of the day when a solar reflection is geometrically possible is clear and sunny.

6.11 The likelihood of these conditions being met varies both person to person and geographically based on local climate conditions. However, it illustrates that a predicted geometric solar reflection does not guarantee a visible solar reflection when considering real world conditions.

Shadow flicker guidance

6.12 “Shadow flicker” refers to the sunlight flickering effect caused when rotating wind turbine blades periodically cast shadows over neighbouring dwellings through small openings such as windows. This can cause a significant detrimental impact upon residential amenity under certain conditions.

6.13 A review of the shadow flicker guidance has been undertaken, with specific reference to the guidance where time limits have been stated for the maximum acceptable duration of shadow flicker, beyond which mitigation is required. The guidance states the following:

1. Shadow flicker is possible at dwellings within 10 rotor diameters\(^{24}\). A typical rotor diameter for a large scale wind turbine is 90m, making the potential shadow flicker zone out to 900m from the wind turbine location\(^{25}\);
2. The following must all apply:
 a. Shadow flicker is only possible when the wind turbine is rotating; and
 b. Shadow flicker is only possible where the Sun passes behind the rotating wind turbine relative to the assessed dwelling; and
 c. Shadow flicker is possible within rooms where windows have a clear view of the rotating wind turbine.
3. Shadow flicker is deemed significant where it last for longer than 30 minutes per day and for more than 30 days of the year within 500m of the turbine\(^{26}\) in some European countries. Beyond this distance no maximum acceptable time is stated;
4. Mitigation is required if all of the above are satisfied.

\(^{23}\) At typical solar panel azimuth and inclinations. Defined as panel elevation angle 15-30 degrees and south facing in the UK and Ireland.

\(^{25}\) The search radius for dwellings is within 1km from a proposed solar development for glint and glare effects. This search area is for glint and glare effects is therefore expected to be larger than the area for shadow flicker for the majority of large scale onshore wind turbines.

\(^{26}\) Draft PPS18: Renewable Energy Annex 1 Wind Energy Planning Issues: Shadow Flicker and Reflected Light, Planning Portal Northern Ireland (the shadow flicker recommendations are based on research by Predac, a European Union sponsored organisation promoting best practice in energy use and supply which draws on experience from Belgium, Denmark, France, the Netherlands and Germany). Last accessed 02/11/2016.
Determination of significant effects

6.14 The effects of glint and glare differ to shadow flicker for a number of reasons, and could be considered less significant because:

- A solar panel produces a solar reflection and therefore the light reflected is less intense than direct sunlight because a percentage of the light is absorbed by the solar panel. Shadow flicker is the effect of the varying light levels directly from the Sun;
- Shadow flicker produces significant variations to light levels within a room. An observer does not have to be looking at the wind turbine directly to observe the effect. For glint and glare effects to be experienced, an observer has to view the solar panels directly;
- A solar reflection from a solar panel will appear static, whereas the effect of shadow flicker will inherently flicker in time with 1/3 the frequency of the rotating blades (assuming three blades);
- The presence of shadow flicker would be a new effect experienced at a dwelling. Solar panels produce solar reflections of similar intensity to those from still water or glass for example, both common reflective sources next to dwellings.

6.15 Shadow flicker guidance states that effects for more than 30 minutes per day over 30 days is significant and requires mitigation. Considering the information presented within Section 6.5 and the above, it is deemed appropriate to consider the effects of glint and glare less significant than shadow flicker. Therefore, the duration beyond which mitigation should be required for glint and glare is longer than for shadow flicker.

6.16 Therefore the recommendation within this guidance is:

- If visible glint and glare is predicted for a surrounding dwelling for longer than 60 minutes per day, for three or more months of the year, then the impact should be considered significant with respect to residential amenity. In this scenario, mitigation should be implemented.
6.17 The process outlined in the following flow chart (Figure 9) is recommended when determining whether a solar reflection should be deemed significant and mitigation implemented.

Solar Reflection Significance Flow Chart – Dwellings

The following flow chart should be used to determine the requirement for mitigation regarding solar reflections towards local residents.

Figure 9 Dwelling impact significance flow chart
6.18 ‘Significant screening’ with respect to visibility of reflecting solar panels implies that the observer’s view is impeded to the extent that the presence of the solar panels cannot be easily discerned at first glance. For example, a hedgerow that contains small gaps that facilitate partial visibility of the panel face(s) would provide ‘significant screening’. Figure 10 below illustrates this.

![Profile View and Observer’s View of significant screening](image)

Figure 10 Illustration of ‘significant screening’

Conclusions

6.19 The visibility of the reflecting solar panels from within a dwelling will determine the duration of a solar reflection. Where solar reflections persist beyond 60 minutes per day for three or more months per year, solar reflections are considered significant and mitigation should be implemented. Consultation is recommended where there is a requirement for mitigation.
7 ASSESSING THE IMPACT UPON ROAD USERS

Overview
7.1 Locating a solar PV development next to a road is often essential due to access requirements. The possibility of glint and glare effects from the proposed solar PV development can however lead to concerns with respect to the possible impact upon road safety especially if the solar PV development is to be located next to a road with fast moving and/or busy traffic. Therefore a glint and glare assessment may be requested by the relevant stakeholders so that the possible effects can be understood.

Key considerations
7.2 A list of key considerations for assessing glint and glare with respect to road safety is presented below:

- A road user may have views of a solar PV development. Where a view of the solar panel exists, a solar reflection may be possible;
- A view of a solar panel does however guarantee that a solar reflection is possible;
- There is no technical limit (distance) within which a solar reflection is possible for a surrounding road user however, the significance of a reflection decreases with distance. This is because the proportion of an observer's field of vision that is taken up by the reflecting area diminishes as the separation distance increases;
- Seasonal variations or additional development may change the view from a road user towards the solar panels over time;
- Terrain and shielding by vegetation are also more likely to obstruct an observer's view at longer distances;
- In general, the geometry of the relationship between the solar panels and the movement of the Sun in the northern hemisphere means that roads due east and west of the panels are most likely to view a solar reflection for south facing arrays panels. roads that are north or south of the panels are very unlikely to experience a solar reflection;
- For solar PV developments that have solar panels orientated at an azimuth direction other than south, solar reflections may be directed in alternate directions.

7.3 The following subsections present the recommended methodology for assessing the impact upon road safety.

Identifying receptors
7.4 The following process should be used for identifying road receptors:

1. Identify roads in the immediate surrounding area (out to approximately 1km from the solar PV development boundary) that may have visual line of sight to the solar panels;
2. If visual line of sight exists between the proposed solar PV development and the road, then a solar reflection could be experienced if it is geometrically possible;
3. If there is no line of sight, then a reflection cannot be experienced;
4. Assess a length of road, choosing individual receptor locations no more than 200 metres apart. This is shown in Figure 11 on the following page;
5. An additional height should be added to the ground level height to represent the typical viewing height from a road user. For road users, a height of 1.5 metres is recommended;
6. Use the height and location data within the geometric solar reflection model.
Assessment process

7.5 The following process should be used for modelling glint and glare for the identified road user receptors:

1. Define the solar PV development solar panel area;
2. Undertake geometric calculations, as outlined within Section 4 of this guidance;
3. Produce a solar reflection chart to determine whether a solar reflection is geometrically possible;
4. Assess the results of the geometric glint and glare assessment in the context of the following:
 a. Sun location relative to the solar panels;
 b. Location of the reflecting solar panels relative to the road and direction of traffic;
 c. Consideration of existing screening;
 d. Consideration of proposed screening;
5. Determine whether a solar reflection is significant;
6. Consider mitigation, if required.
Determination of significant effects

7.6 A road user travelling on surrounding roads where a solar reflection is geometrically possible would experience a solar reflection that is fleeting in nature. This is because the road user is typically moving at speeds anywhere up to 70mph or 120kph. This means that the duration of a predicted solar reflection is mostly dependent on the speed of the road user travelling past the solar farm at the time when a solar reflection is geometrically possible. Therefore, the location of origin of the solar reflection is more significant than its duration because the receptor is moving.

7.7 There are many solar PV developments where solar reflections are geometrically possible towards roads. Experiencing a solar reflection does not guarantee a significant effect requiring mitigation however a there a number of criteria that could be considered when determining the significance of a solar reflection, these are:

- Is the solar reflection incident to direct sunlight?
- What type of road is affected? Major National, National, Regional or Local roads?
- Does the solar reflection appear in-line with, or close to, the direction of travel?
- What is the length of road that may experience a solar reflection?

7.8 For south facing solar panels at standard inclinations\(^\text{27}\) it is likely that the Sun will be incident to the solar reflections in the UK and Ireland. Whether the solar reflection appears in-line with, or close to, the direction of travel depends on the geographic location of the surrounding road relative to the solar PV development. This, along with the size of the proposed solar PV development, determines the length of road that may be affected.

7.9 Because the length of time a solar reflection can last is mostly dependent on the road user’s speed rather than the solar PV development, the length of time that a solar reflection is not considered when determining its significance. Instead, the location of origin of the solar reflection and road type are considered.

7.10 The process outlined in the flow chart on the following page (Figure 12) is recommended when determining whether a solar reflection should be deemed significant and mitigation implemented.

\(^{27}\) Defined as 15-35 degrees in the UK and Ireland.
Regional, National and Major National roads are the most important in the majority of instances. Local roads may, under particular conditions, prove to be vital to the surrounding road network. Therefore, consultation with the local highways authority is recommended to ascertain the significance of a surrounding road where it is unknown.

Conclusions

7.11 The visibility of the reflecting solar panels from a road will in part, determine the duration of a solar reflection. In most scenarios, the speed of the vehicle will be the overall determining factor with regard to the duration of the solar reflection. The type of road affected and location of origin of the solar reflection with respect to the direction on of road travel will determine the requirement for mitigation. Consultation with the local highways authority is recommended where mitigation is required.
8 ASSESSING THE IMPACT UPON RAILWAY OPERATIONS

Overview
8.1 Solar PV developments can be located adjacent to railway lines, indeed there are already a number of operational solar PV developments in these locations present in the UK28,29. A consideration of a railway stakeholder may be the safety implications of glint and glare effects from a proposed solar PV development. It is therefore important to set a specific and standardised assessment methodology so that all proposals are assessed in the same way.

Key considerations
8.2 A list of key considerations for assessing glint and glare with respect to rail safety is presented below:

- A train driver may have views of a solar PV development. Where a view of the solar panel exists, a solar reflection may be possible.
- A view of a solar panel does not however guarantee that a solar reflection is possible.
- There is no technical limit (distance) to which a solar reflection is possible towards a surrounding railway line however, the significance of a reflection decreases with distance. This is because the proportion of an observer’s field of vision that is taken up by the reflecting area diminishes as the separation distance increases.
- Seasonal variations or additional development may change the view from a receptor location towards the solar panels over time.
- Terrain and shielding by vegetation are also more likely to obstruct an observer’s view at longer distances.
- In general, the geometry of the relationship between the solar panels and the movement of the Sun in the northern hemisphere means that railways due east and west of the panels are most likely to view a solar reflection for traditional south facing arrays panels. Railways that are north or south of the panels are very unlikely to experience a solar reflection.
- For solar PV developments that have solar panels orientated at an azimuth direction other than south, solar reflections may be directed in alternate directions.

8.3 The following subsections present the recommended methodology for assessing the impact upon railway safety.

Identifying receptors – railway infrastructure
8.4 The following process should be used for identifying receptors30:

1. Identify railway lines in the immediate surrounding area (out to approximately 100m from the solar farm boundary) that may have visual line of sight to the proposed solar PV development;
2. If visual line of sight exists between the proposed solar farm and the railway line, then a solar reflection could be experienced if it is geometrically possible;
3. If there is no line of sight, then a reflection cannot be experienced;
4. Assess a length of railway line, choosing individual receptor locations no more than 200 metres apart. This is shown in Figure 13 on the following page;
5. An additional height should be added to the ground level height to represent the typical viewing height of a train driver. For train drivers, a height of 2.75 metres is recommended;

28 Hadlow Solar Farm, Off Sherenden Road, Tudeley, Kent, England.
29 Tower Hayes Solar Farm, near Stanton under Bardon, Leicestershire, England.
30 Railway signals are discussed separately, beginning paragraph 8.11.
6. Use the height and location data for feeding into the geometric solar reflection model.

Assessment process

8.5 The following process should be used for modelling glint and glare for an identified railway line:

1. Define the solar PV development solar panel area;
2. Undertake geometric calculations, as outlined within Section 4 of this guidance;
3. Produce a solar reflection chart to determine whether a solar reflection is geometrically possible;
4. Assess the results of the geometric glint and glare assessment in the context of the following:
 a. Sun location relative to the solar panels;
 b. Location of the reflecting solar panels relative to the railway line and direction of trains;
 c. Existing screening;
 d. Proposed screening;
5. Determine whether a solar reflection is significant;
6. Consider mitigation, if required.

Figure 13 Illustration showing receptor identification process – train drivers and signals
Determination of significant effects

8.6 A train driver travelling on a section of railway line where a solar reflection is geometrically possible would experience a solar reflection that is fleeting in nature. This is because a train will typically be moving at speeds anywhere up to 120mph (~190kph). This means that the duration of a predicted solar reflection is mostly dependent on the speed of the train travelling past the solar PV development at the time when a solar reflection is geometrically possible. Therefore, the location of origin of the solar reflection is more significant than its duration because the receptor is moving.

8.7 There are examples of solar PV developments where solar reflections are geometrically possible towards an adjacent railway line. Experiencing a solar reflection does not necessarily mean a significant effect requiring mitigation however a there a number of criteria that should be considered when determining the significance of a solar reflection, these are:

- Is the solar reflection incident to direct sunlight?
- Does the affected length of railway have a signal or crossing?
- Does the solar reflection appear in line with, or close to, the direction of travel?
- What is the length of railway that may experience a solar reflection?

8.8 For south facing solar panels at standard inclinations\(^{31}\) it is likely that the Sun will be incident to the solar reflections in the UK and Ireland. Whether the solar reflection appears in line with, or close to, the direction of travel depends on the geographic location of the surrounding railway relative to the solar PV development. This, along with the size of the proposed solar PV development, determines the length of railway line that may be affected.

8.9 Because the length of time a solar reflection can last is mostly dependent on a train’s speed rather than the solar PV development, the length of time that a solar reflection can last is not considered when determining its significance. Instead, the location of origination of the solar reflection, length of railway and signal locations are considered.

8.10 The process outlined in the flow chart on the following page (Figure 14) is recommended when determining whether a solar reflection should be deemed significant and mitigation implemented.

\(^{31}\) Defined as 15-35 degrees in the UK and Ireland
Other considerations

Railway Signals

8.11 Railway signal lights are located immediately adjacent to or above a railway line and are used to direct trains on the lines. In some instances, signals may be difficult to identify and therefore consultation with the railway stakeholder may be beneficial to identify their location and specification. An assessment may be required because of the potential for a phantom aspect illusion occurring. The definition of phantom aspect is presented below.

8.12 ‘Light emitted from a Signal lens assembly that has originated from an external source (usually the Sun) and has been internally reflected within the Signal Head in such a way that the lens assembly gives the appearance of being lit’.

8.13 A phantom aspect is caused when the incoming light is of an intensity which causes a light signal appear illuminated when it is not switched on. This is a particular problem for filament bulbs with a reflective mirror incorporated into the bulb design.

8.14 No known studies have shown that a phantom aspect illusion is possible due to a solar reflection from a solar panel. Furthermore, modern LED signals are recognised to not be susceptible to phantom aspect illusions. Many signals also have hoods attached to reduce the risk of phantom aspect illusions occurring. If the reflecting solar panels are not in line of sight to the signal lens, then no phantom aspect illusion is possible. It is recommended that an assessment of signals lights be undertaken only when the signal utilises incandescent bulb technology and/or the signal does not have a hood attached. A railway signal location however should be considered when there may also be solar reflections towards a train driver on the railway line.

Level Crossings and Level Crossing Warning Lights (LCWL)

8.15 For determining the impact of glint and glare upon level crossings with respect to road users, follow the ‘road users’ assessment methodology presented in Section 7. For LCWLs, follow the assessment of railway signals as presented in Section 8.11-8.14. In both instances, consultation with the railway stakeholder is advised.

Conclusions

8.16 The visibility of the reflecting solar panels to static infrastructure will determine the duration of a solar reflection. For moving trains, their speed will be the overall determining factor with regard to the duration of the solar reflection. Consultation with the railway stakeholder is recommended to determine the requirement for assessment, identify particular receptors and determine whether mitigation is required.
9 ASSESSING THE IMPACT UPON AVIATION OPERATIONS

Overview

9.1 Solar PV developments and aviation activity can safely co-exist. There are many examples of solar PV developments being sited on or near to an aerodrome. Safeguarding an aerodrome and its aviation activity is essential, and glint and glare effects may cause a safety concern under certain conditions. Therefore a glint and glare assessment of a proposed solar PV development is essential when it is to be sited in the vicinity of an aerodrome. This section presents a recommended assessment approach, based on previous guidance and experience within the UK, Ireland and internationally.

Key considerations

9.2 The two main receptors that require consideration within an aviation glint and glare assessment are pilots in aircraft and air traffic controllers in the Air Traffic Control (ATC) Tower.

9.3 Whilst a proposed solar PV development may be located such that air traffic controllers have no view of the solar panels, pilots navigating the airspace above will almost certainly have a view of the solar panels. Where a view of the solar panel exists, a solar reflection may be possible. A view of a solar panel does not however guarantee that a solar reflection is possible.

9.4 There is no technical limit (distance) within which a solar reflection is possible towards the ATC Tower or pilots, however the significance of a reflection decreases with distance. This is because the proportion of an observer’s field of vision that is taken up by the reflecting area diminishes as the separation distance increases.

9.5 Seasonal variations or additional development may change the view from the ATC tower towards the solar panels over time.

9.6 Terrain and shielding by vegetation are also more likely to obstruct an air traffic controller’s view at longer distances.

9.7 In general, the geometry of the relationship between the solar panels and the movement of the Sun in the northern hemisphere means that ATC towers due east and west of the panels are most likely to view a solar reflection for south facing arrays panels. ATC towers north or south of the panels are very unlikely to experience a solar reflection unless the solar PV development and ATC Tower are in close proximity i.e. an on-aerodrome development. Pilots may experience solar reflection from a greater number of locations because of the changing location and altitude of the aircraft.

9.8 For solar PV developments that have solar panels orientated at an azimuth direction other than south, solar reflections may be directed in alternate directions.

Identifying receptors – aerodromes

9.9 The following process should be used for identifying the requirement for assessment:

1. Identify aerodromes within 30km of the proposed solar PV development. Complete the following depending on proximity;
 a. Within 5km: consult with the aerodrome, complete a glint and glare assessment;
 b. Within 5-10km: consult with the aerodrome, the aerodrome is likely to request a glint and glare assessment;
 c. 10km-30km: consider consultation with certified and licensed aerodromes, the aerodrome may request a glint and glare assessment.

33 Gatwick Airport and Athens Airport for example.
9.10 If a glint and glare assessment is to be completed, follow the process outlined below for identifying receptors:

1. Identify any existing or proposed ATC Towers (if there is one) and approach routes for all existing or proposed runways;
2. If visual line of sight exists between the proposed solar PV development and the ATC Tower, then a solar reflection could be experienced if it is geometrically possible;
3. If there is no line of sight, then a reflection cannot be experienced;
4. Assess a 2-mile\(^34\) approach path towards the runways using the following criteria:
 a. Starting point taken at 50 feet (15.2m) above the runway threshold;
 b. Measure out to 2 miles from the runway threshold using a 3 degree descent path (unless requested otherwise);
 c. Take reference aircraft locations at no more than ¼ mile intervals (minimum of nine points over 2-miles);
5. An additional height should be added to the ground level height to represent the viewing height of an air traffic controller within the ATC Tower.
6. Use the height and location data for feeding into the geometric solar reflection model. Figure 15 below shows the process for identifying aviation receptors.

\(^34\) A statute mile (1.61km).

Figure 15 Illustration showing receptor identification process – aviation
Assessment process

9.11 The following process should be used for modelling glint and glare effect for aviation activity:

1. Define the solar PV development solar panel area;
2. Undertake geometric calculations, as outlined within Section 4 of this guidance;
3. Produce a solar reflection chart to determine whether a solar reflection is geometrically possible;
4. Assess the results of the geometric glint and glare assessment in the context of the following:
 a. Sun location relative to the solar panels;
 b. Location of the reflecting solar panels relative to the ATC Tower and/or aircraft location;
 c. Consideration of existing screening (ATC Tower only);
 d. Consideration of proposed screening (ATC Tower only);
5. Determine whether a solar reflection is significant;
6. Consider mitigation, if required.

Determination of significant effects

Air Traffic Control

9.12 An air traffic controller uses the visual control room to monitor and direct aircraft on the ground, approaching and departing the aerodrome. It is essential that air traffic controllers have a clear unobstructed view of the aviation activity. The key areas on an aerodrome are the views toward the runway thresholds, taxiways and aircraft bays.

9.13 The FAA guidance states that no solar reflection towards the ATC tower should be produced by a proposed solar PV development:

‘1. No potential for glint or glare in the existing or planned Airport Traffic Control Tower (ATCT) cab…’

9.14 However, it is recommended that any predicted solar reflection should be assessed pragmatically. Therefore, it is recommended that the following should be considered when determining whether the solar reflection is significant:

1. The predicted intensity of the solar reflection;
2. Location of origin of the solar reflection relative to the ATC Tower;
3. Solar reflection duration per day;
4. Number of days a solar reflection is geometrically possible per year;
5. The time of day when a solar reflection is geometrically possible.

9.15 Determining a period of time that is considered to be significant will depend on the operations at a particular aerodrome.

9.16 The process outlined within the flow chart on the following page (Figure 16) is recommended when determining whether a solar reflection should be deemed significant and mitigation implemented.
Approaching aircraft

9.17 A pilot flying a final approach path where a solar reflection is geometrically possible would experience a fleeting solar reflection as the aircraft travels through the solar reflection zone. This means that the duration of a predicted solar reflection is dependent on the speed of the aircraft travelling above the solar PV development at the time when a solar reflection is geometrically possible. Therefore, the location of origin of the solar reflection is more significant than its duration because the receptor is moving fast. The time at which the solar reflection may occur should however be considered.

9.18 There are examples of solar PV developments where solar reflections are geometrically possible towards approaching aircraft. Experiencing a solar reflection does not guarantee a significant effect requiring mitigation however a there a number of criteria that should be considered when determining the significance of a solar reflection and mitigation requirements, these are:

- Is the solar reflection incident to direct sunlight?
- Does the solar reflection originate from near to a runway threshold?
- What is the length of approach path that can experience a solar reflection?
- Does the solar reflection occur at a significant time?
- Does the solar reflection occur for a significant period of time?
- What is the intensity of the solar reflection?
9.19 Further comments regarding the solar reflection intensity and its effect on the significance is presented in the following sub-section.

Solar reflection intensity

9.20 Many UK and Irish aviation stakeholders have adopted the FAA guidance with respect to glint glare. Along with the guidance, the Sandia Solar Glare Hazard Analysis Tool (SGHAT) model was also created. This model can be used to determine the intensity of a solar reflection which is significant when determining the impact upon approaching aircraft.

9.21 The FAA guidance states that:

‘2. No potential for glare or “low potential for after-image” (shown in green in Figure 1) along the final approach path for any existing landing threshold or future landing thresholds (including any planned interim phases of the landing thresholds) as shown on the current FAA-approved Airport Layout Plan (ALP). The final approach path is defined as two (2) miles from fifty (50) feet above the landing threshold using a standard three (3) degree glide path.’

9.22 It is recommended that the FAA guidance is used as a basis for assessment, however it is advised that a pragmatic approach is followed when determining whether a predicted solar reflection may indeed be a hazard to aviation safety.

9.23 The process outlined within the following flow chart (Figure 17) is recommended when determining whether a solar reflection should be deemed significant and mitigation implemented.

![Solar Reflection Significance Flow Chart](chart.png)

Figure 17 Pilots (approaching aircraft) impact significance flow chart
Other considerations

Circling Aircraft, Visual Manoeuvring Areas, Visual Circuits and En-Route Aircraft

9.24 Some aerodromes may request that circling aircraft, visual manoeuvring areas, visual circuits and en-route aircraft be assessed. If requested, the requirements of the assessment should be considered on a case-by-case basis and through consultation with the aerodrome. A typical assessment for aircraft in the Visual Manoeuvring Area (VMA) is as follows:

- Glint and glare calculations are undertaken for points spaced at regular intervals across a 10km radius circle centred above the airport at an altitude of 1500 feet above mean sea level;
- For each point where glint and glare is possible, the glare is classified in accordance with FAA standards;
- Where glint and glare is predicted to have ‘potential for temporary after-image’ or greater, the following should be completed:
 - The results will be overlaid on the published ICAO Visual Approach Chart for the airport or similar;
 - An operational assessment will then be undertaken using the overlaid Visual Approach Chart to consider the following:
 - Visual Holding Patterns;
 - Visual Reporting Points;
 - Aircraft joining approach from Visual Hold;
 - Other Visual Approach Chart features.
- Considering all of the above, the analysis will determine whether a significant impact is expected;
- Where glint and glare is not predicted or, at worst, have a ‘low-potential for temporary after-image’ no significant impact is expected.

Conclusions

9.25 The visibility of the reflecting solar panels to static infrastructure will determine the duration of a solar reflection. For moving aircraft, its speed will be the overall determining factor with regard to the duration of the solar reflection. Consultation with the aviation stakeholder is essential to determine the requirement for assessment. It is recommended to consider aerodromes within 30km though a detailed assessment may not be required.

35 Specific request may vary from an aerodrome depending on its operations.
36 International Civil Aviation Organisation – ICAO. Chart usually available from the relevant national aviation stakeholder or aerodrome.
10 OVERALL CONCLUSIONS

10.1 The purpose of this guidance is to provide solar PV developers, planners and stakeholders with an assessment process for determining the effect of glint and glare (solar reflections) upon receptors surrounding a proposed solar PV development.

10.2 Glint and glare is a relatively new planning consideration thus there is little formal guidance regarding glint and glare for developers, planners or stakeholders to follow.

10.3 The guidance presented within this report is based on the following:
- Reviews of existing guidance in a variety of areas;
- Glint and glare assessment experience and industry knowledge;
- Overview of available solar reflection studies.

10.4 This guidance document has been produced to bridge this knowledge gap pertaining to the assessment of glint and glare from solar PV panels. The aim is to standardise an assessment process for developers, planners or stakeholders to follow.

10.5 This guidance document has specific focus on the UK and Irish markets however the methodologies are deemed applicable for worldwide solar PV development.

Modelling Requirements

10.6 A glint and glare assessment model must include the following:
- The Earth’s orbit around the Sun;
- The Earth’s rotation;
- The Earth’s orientation;
- The location of the solar PV development including the reflector (solar panel) area;
- The reflector’s 3D orientation including azimuth angle of the solar panel (the orientation of the solar panels relative to north and the solar panel elevation angle);
- Local topography including receptor and panel heights above mean sea level.

10.7 For increased accuracy, the model should account for the following:
- Terrain at the visible horizon;
- Local time zone and daylight savings times;
- Determine which solar panels create the solar reflection within the solar PV development;
- Azimuth range of the Sun when a solar reflection is geometrically possible;
- Vertical elevation range of the Sun when a solar reflection is geometrically possible;
- High-resolution analysis i.e. undertaking multiple geometric calculations within the given solar PV development area. For example, every 1-20m;
- The intensity of the solar reflection produced.

Assessment Inputs

10.8 Dwellings within approximately 1km of a proposed solar PV development that may have a view of the solar panels. Include an additional height to account for eye level within the relevant floor of the dwelling.

10.9 Roads within approximately 1km of a proposed solar PV development that may have a view of the solar panels. Include an additional height to account for eye level of a road user.
10.10 Railway infrastructure within approximately 100m of a proposed solar PV development. Include an additional height to account for eye level of a train driver or the height of a railway signal. Include an assessment of railway signals that utilise incandescent bulb technology and/or where no hood is attached.

10.11 Consider aviation receptors out to 30km to determine, if any, the requirement for assessment. Standard assessment includes the Air Traffic Control (ATC) tower and the approach paths. Additional receptors may be included where a solar reflection may be deemed a hazard to safety.

Assessment Significance

10.12 Determining the significance of a solar reflection varies for each receptor type. In general, the significance criteria for glint and glare effects are as follows:

- No Impact – A solar reflection is not geometrically possible or will not be visible from the assessed receptor. No mitigation required.

- Low – A solar reflection is geometrically possible however any impact is considered to be small such that mitigation is not required e.g. intervening screening will limit the view of the reflecting solar panels significantly. No mitigation required.

- Moderate – A solar reflection is geometrically possible and visible however it occurs under conditions that do not represent a worst-case scenario. Mitigation may be required.

- Major – A solar reflection is geometrically possible and visible under conditions that will produce a significant impact. Mitigation will be required if the proposed solar PV development is to proceed. Mitigation and consultation is recommended.

10.13 See the following sections where the process for determining the significance of a solar reflection is described for each receptor type:

- Section 6 – Dwellings;
- Section 7 – Road infrastructure;
- Section 8 – Railway infrastructure;
- Section 9 – Aviation infrastructure.

10.14 In each section, the process for determining the significance of a solar reflection is described comprehensively.

Guidance Conclusions

10.15 This guidance should be followed to ensure comprehensive assessment of solar PV developments with respect to glint and glare. This guidance is applicable for solar PV development anywhere in the world.